Visual experience regulates metabotropic glutamate receptor-mediated plasticity of AMPA receptor synaptic transmission by homer1a induction.

نویسندگان

  • Kendall Van Keuren-Jensen
  • Hollis T Cline
چکیده

Brief metabotropic glutamate receptor (mGluR) activation leads to plasticity of AMPA receptor (AMPAR) synaptic transmission. To test whether mGluR-mediated plasticity of AMPAR transmission is influenced by recent neuronal activity, we manipulated visual activity in Xenopus laevis tadpoles in vivo. We compared mGluR-mediated plasticity of AMPAR transmission in optic tectal cells of tadpoles with low levels of previous synaptic activity (overnight in the dark) to transmission in neurons from animals after 4 h of constant visual stimulation. mGluR-mediated plasticity of AMPA transmission was significantly decreased in neurons with recent activity. We tested the role of the activity-regulated mGluR scaffolding protein Homer1a in modulating mGluR-mediated changes in AMPAR transmission. We found that, by changing the ratios of Homer 1a to Homer 1b in vivo, by either induction of endogenous Homer1a by visual activity or ectopic expression of Homer1a or Homer1b, we could change the direction of mGluR-mediated plasticity. This is the first evidence that mGluR-mediated changes in AMPA transmission can be regulated by Homer proteins in response to physiologically relevant stimuli.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homeostatic Scaling Requires Group I mGluR Activation Mediated by Homer1a

Homeostatic scaling is a non-Hebbian form of neural plasticity that maintains neuronal excitability and informational content of synaptic arrays in the face of changes of network activity. Here, we demonstrate that homeostatic scaling is dependent on group I metabotropic glutamate receptor activation that is mediated by the immediate early gene Homer1a. Homer1a is transiently upregulated during...

متن کامل

P6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation

Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...

متن کامل

Ionotropic Glutamate Receptors and their Role in Neurological Diseases

Glutamate is extensively and relatively uniformly distributed in the central nervous system (CNS) and its effects mediated by two distinct groups of receptors including Ionotropic and metabotropic glutamate receptors. Concentration of glutamate in the nervous system is much higher than in other tissues. Glutamate receptors play an important role in synaptic transmission, neural plasticity and n...

متن کامل

MicroRNA-137 Controls AMPA-Receptor-Mediated Transmission and mGluR-Dependent LTD.

Mutations affecting the levels of microRNA miR-137 are associated with intellectual disability and schizophrenia. However, the pathophysiological role of miR-137 remains poorly understood. Here, we describe a highly conserved miR-137-binding site within the mRNA encoding the GluA1 subunit of AMPA-type glutamate receptors (AMPARs) and confirm that GluA1 is a direct target of miR-137. Postsynapti...

متن کامل

Homer1a signaling in the amygdala counteracts pain-related synaptic plasticity, mGluR1 function and pain behaviors

BACKGROUND Group I metabotropic glutamate receptor (mGluR1/5) signaling is an important mechanism of pain-related plasticity in the amygdala that plays a key role in the emotional-affective dimension of pain. Homer1a, the short form of the Homer1 family of scaffolding proteins, disrupts the mGluR-signaling complex and negatively regulates nociceptive plasticity at spinal synapses. Using transge...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 26 29  شماره 

صفحات  -

تاریخ انتشار 2006